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Abstract

Novel methods are described for removing the strong singularities arising in the domain integrals of
elastoplasticity, and for solving the non-linear equation set. The former employs a new transformation from domain
integrals to (cell) boundary integrals. The number of system equations is minimised by using the plastic multiplier as
the primary unknown and an incremental variable stiffness iterative algorithm is developed for solving these
equations. Excellent convergence is achieved and some numerical examples demonstrate the algorithm’s
effectiveness. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Boundary element method; Elastoplastic problem; Singular domain integral; Variable stiffness iteration; Plastic
multiplier

1. Introduction

The earliest work on non-linear boundary element method (BEM) was done by Swedlow and Cruse
(1971), Riccardella (1973) and Mendelson and Albers (1975). Some errors in the earlier formulations
were corrected by Mukherjee (1977), Bui (1978) and Telles and Brebbia (1979). However, some inherent
difficulties, such as the strongly singular domain integrals and the stability of the system equations, have
stymied development of this method.

One of the crucial tasks in the non-linear BEM is to remove (or regularise) the strong singularities
arising in the domain integrals. The existing methodologies may be categorised as follows:

1. Interpolation using nodal displacements (differentiating the shape functions) (Banerjee et al., 1979,
Gao and Lu, 1992; Wearing and Dimagiba, 1998).
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2. Analytical and semi-analytical techniques (Riccardella, 1973; Mendelson and Albers, 1975; Telles and
Brebbia, 1979; Zheng and Gao, 1986; Zheng et al., 1989; Chandra and Saigal, 1991).

3. Exclusion of a small sphere using higher order volume cells (Banerjee and Davies, 1984; Banerjee and
Raveendra, 1986).

4. Transformation of domain integrals to surface integrals (Huang and Du, 1988; Zhang et al., 1992;
Dallner and Kuhn, 1993; Chandra and Mukherjee, 1996; Chen et al., 1996; Dong and Antes, 1998).

5. Regularisation of singular integrals (Guiggiani and Gigante, 1990; Guiggiani et al., 1992; Huber et
al., 1996; Cisilino et al., 1998; Poon et al., 1998a; Burghardt and Van, 1998).

6. Indirect approaches (Telles and Brebbia, 1979; Brebbia et al., 1984; Lee and Fenner, 1986; Chen and
Ji, 1987; Henry and Banerjee, 1988; Banerjee et al., 1989).

In category 1, the internal stresses are calculated using nodal displacements by differentiating the shape

functions using methods employed in FEM. Due to the properties of the shape functions and their
derivatives, this local procedure is prone to significant deviations especially in the case of coarse meshes
and low order shape functions. Category 2 is only feasible with ‘constant’ or ‘linear’ cells, in which the
singularities of the initial stress (strain) kernels can be eliminated analytically or semi-analytically. In
category 3, the strongly singular domain integrals become bounded, if a small sphere around the
singular point is excluded. Although this method can deal with higher order cells, with the help of the
volume sub-division technique which is originally proposed by Lachat (1975) and coded by Mustoe
(1984), it may give inaccurate results for cases in which the cells around the singular point are greatly
different in shape or size.

In category 4, the singularity is first isolated by subtracting singular function from the original
singular integral. The subtracted integral becomes weakly singular, which can then be integrated using
standard Gauss quadrature. The singular function is transformed, via Gauss theorem, into a regular
surface integral over the boundary of the body or plastic region. A rather different transformation was
employed by Dallner and Kuhn (1993) in their initial strain algorithm. In their work, the transformed
surface integral is mapped over the boundary of the elements surrounding the source point rather than
over the body’s surface.

Another approach (category 5) for direct evaluation of principal value integrals was suggested by
Guiggiani and Gigante (1990), based on the regularisation of the singular integral by subtracting
the truncated Taylor series from the integrand. Although, in principle, this method can also be
used for evaluation of singular surface integrals (Guiggiani et al., 1992), it is feasible only for
smooth boundary points. All functions must be expressed in a local spherical co-ordinate system.
Then all integrands, including kernels, spatial derivatives, Jacobians and shape functions are
expanded in Taylor series form, in terms of the local co-ordinates. As a consequence, the
calculations are tedious and complicated, and difficult to implement in a computer code. Another
type of regularisation for directly calculating the boundary stresses is developed by Poon et al.
(1998a). A simple equation was obtained by the use of three global modes of deformation: rigid-
body displacement, linecar displacement, and a fully constrained plastic solution. While their
approach is relatively straightforward, computation would be enormous, since the system equations
now involve stresses, displacements and displacement gradients.

In the last category 6, the singularities can be circumvented by employing indirect approaches, based
on the application of known reference solutions. The drawback of this approach is that it requires
discretization of the cells through the entire region, which negates to a certain extent the advantage of
BEM (namely, that only the yield zone needs to be discretised into cells). To avoid this discretization,
multi-region BEM technique was employed (Banerjee et al., 1989) or a second boundary was defined
(Lee and Fenner, 1986).

Another important task in non-linear BEM is the solution strategy for solving the system equations.
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Several algorithms using domain discretization methods have been developed. More often than not the
algorithms are ‘explicit’ as described in detail by Telles (1983) and Banerjee (1994). These solution
algorithms can be roughly divided into two groups, i.e., the initial strain approach (Riccardella, 1973;
Mendelson and Albers, 1975; Kumar and Mukherjee, 1977; Telles and Brebbia, 1979, 1980; Lee and
Fenner, 1986; Kane, 1994; Cisilino et al., 1998) and the initial stress approach (Banerjee et al., 1979;
Banerjee and Davies, 1979; Raveendra, 1984; Zheng and Gao, 1986; Henry, 1987; Chopra and Dargush,
1994).

More recently, several researchers have investigated implicit solution schemes, on account of their
unconditional stability (Telles and Carrer, 1991; Bonnet and Mukherjee, 1996; Poon et al., 1998b;
Burghardt and Van, 1998; Gao, 1999). Among these works, Bonnet and Mukherjee (1996) first applied
the consistent tangent operator method to boundary element method. This method, which was first
proposed by Simo and Taylor (1985) in the finite element method context, exploits the quadratic rate of
convergence which can be achieved by utilising consistent elastoplastic constitutive relations in the
Newton—Raphson iterative process. Although this iterative method is relatively easy to code, it requires
considerable computer memory. This is because the system equations are formulated in terms of strain
increments, which have six degrees of freedom at each node for 3D problems. Even if the block
decomposition technique is employed, as described by Bonnet and Mukherjee (1996), the computer
memory requirement is substantial.

A different type of solution strategy (incremental variable stiffness) has been successfully demonstrated
by Banerjee and his co-workers (Raveendra, 1984; Banerjee et al., 1989; Banerjee, 1994). In this scheme,
the internal variables are eliminated, by expressing them in terms of boundary variables, and
consequently no iteration is needed, if small increments are used. Chopra and Dargush (1994) described
a Newton—Raphson solution algorithm for solving the non-linear system equations, in which both the
boundary unknowns and plastic multipliers were used as primary unknowns of the system equations.

In this paper, novel methods are presented for removing the strong singularities arising in the domain
integrals in evaluating interior stresses and for solving the non-linear system of equations. New identities
for the initial stress and strain kernels are derived, and a novel technique is used to transform the
domain integrals into (cell) boundary integrals, in order to remove the strong singularities. The results
are suitable for both 2D and 3D problems, linear and higher order cells, and both initial stress and
strain approaches. To solve the system equations, a novel incremental variable stiffness iterative
algorithm is proposed based on the Newton—Raphson iterative scheme. In this algorithm, the plastic
multipliers (only) are used as the primary unknowns, with the result that the number of degrees of
freedom is equal to the number of yielded nodes in the current increment. Consequently, both
computational time and computer memory are substantially reduced. Rapid convergence is achieved by
using the Newton—Raphson iterative procedure as demonstrated by some numerical examples.

2. BEM formulation of elasto-plasticity
For a region Q bounded by a boundary I', the direct formulation of the boundary integral equations

for elasto-plasticity can be expressed in the incremental form (Swedlow and Cruse, 1971; Telles and
Brebbia, 1979; Banerjee and Raveendra, 1986):

PP+ | TP 01 @) ar@) = | UxP. Q)@+ | EwiPifyeo)

where Tj;(P, Q) and Uy(P, Q) are the Kelvin fundamental solutions for tractions (¢#) and displacements
(«) at a point Q in the jth direction due to a unit load at point P and Ej; (P, q) is the corresponding
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strain kernel:
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where, f = 3 in three dimensions and f = 2 in plane-strain; r is the distance between the source point p
and the field point Q.

In Eq. (1), ¢;(P)=1/26; for smooth boundary points. The strongly singular terms arising from the
integration of the traction kernel are determined indirectly using the rigid body (translation) condition.
Eq. (1) is also used to calculate the displacements at an interior point p by replacing c;(P) = 1/25; with
¢ij(p) = 0.

The initial stress increment &,/ can be defined in terms of the plastic strain increment as:
=P _ pe P
0 = Dy 4)

where Diy is the elastic constitutive tensor. Interior strain increments & can be found by differentiating
Eq. (1) with respect to the source point p. Then, using the following relationship (e.g., Banerjee and
Davies, 1984):

oy
. ) . Sp\ , . p
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the stress increments ¢;; at an interior point p can be found as

5i(p) = JF Upi(p. Q)ix(0) dI(Q) — L Ty(p. 0)in(Q) dI'(Q)

(6)
+ L} Eipa(p, 4)541(4) dQ(q) + F5(63)
where F ;((fkp,) are the free terms (e.g., Telles, 1983; Banerjee, 1994), and
0Ly Yin
Ej = D¢ = 7
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In the initial strain approach, the terms Ejy, t'r,fl and the free term F g-((}'kp,) should be replaced,
respectively, with Xy, &/ and F f](s,f’,) (Telles, 1983; Banerjee, 1994).

The integrals in Egs. (1) and (6) should be interpreted in the Cauchy principal value sense. After use
of the cell sub-division technique (Banerjee and Davies, 1984; Mustoe, 1984), the weakly singular
domain integral in Eq. (1) involving the kernel Ej; is bounded, while the strongly singular domain
integral in Eq. (6) involving the kernel Ejy; is still singular, with order 1/r. Special integration techniques
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must therefore be adopted in order to make the integral bounded. One direct method is to exclude a
small sphere around the singular point p (Banerjee and Davies, 1984). This technique gives useful results
only for some special cases. A new efficient method for removing the strong singularity is presented in
the following section.

3. Accurate evaluations of strongly singular domain integrals

The most popular method for treating strongly singular integrals consists of two steps, namely,
isolation and transformation of the singularity (e.g., Krishnasamy et al., 1992). In this paper, the
singularity is first isolated by subtracting a singular function from the original kernel so that the
subtracted term becomes a weakly singular one, which can then be evaluated by standard numerical
integration procedures. The isolated strongly singular integral is then evaluated by integral
transformation, based on the novel identities established below.

3.1. Identities for integrations of strongly singular kernels

To evaluate the domain integrals, the region is usually discretized into cells. For the cells including the
source point p, the domain integrals in Eq. (6) can be written as:

L} Ejja(p, 4)6,(q) dQ(q) = JQ Ei(p> ] 6(q) — o4,(p)] d(q) + é&(ﬁ)[ JQ Ej(p, 9) dQ(éf)} )

Now the first integral on the right-hand side of Eq. (9) is weakly singular and can be evaluated by the
cell sub-division technique (Mustoe, 1984), while the strong singularity is shifted to the second integral
of the right-hand side. To remove this singularity, firstly we examine the integration of the kernel Ej,
over a sphere centred at p with a radius R (Fig. 1).

For such a sphere, from Eq. (7) we have

R
J Ejy dQ = J i (J Wiiki dS) dr (10)
Qr o S,

where S, is the spherical surface (or circle) with radius » for 3D (or 2D) problems. Using a spherical (or
polar) coordinate system centered at p, we can obtain (Gao, 1999):

J 85 dS = 2n(B — 1)d;7"!
S

S

Fig. 1. A sphere with radius R.
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(b)

Fig. 2. Cell sub-division: (a) p at the corner; (b) p at mid-side.

J r’irqj dS _ 27T(ﬁ - 1)5[/}’[5’71
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Substituting Eq. (8) into (10) and using Eq. (11) leads to the identity:

J P dS =0

,.

So from Eq. (10), we obtain

>y

Fig. 3. Local spherical co-ordinate system.

(11)

(12)
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J EjydQ =0 (13)
Qr
In a similar way, for the initial strain approach, we can obtain
J T dQ =0 (14)
Qr

Identities (12)—(14) are valid for a sphere (or circle) of arbitrary radius and provide the basis of
accurately evaluating the strongly singular domain integrals.

3.2. Transformation of the strongly singular domain integrals into cell boundary integrals

In this section, only 3D problems are considered since the application of the results to 2D problems is
straightforward. A cell, including the source point p, is sub-divided into three tetrahedra (when p is
located at a corner node) or four tetrahedra (when p is located at a mid-side node). These tetrahedra are
defined by a vertex at point p and those surfaces of the cell not including p (Fig. 2). For each
tetrahedron, we define a spherical co-ordinate system with origin at p (Fig. 3):

For such a co-ordinate system, we have:

dQ =drdS (15)
where the differential element on the spherical surface (dsS) is:
dS = r? sin 0 d0 d¢ (16)

Let us consider the integral of Ej; over a sub-cell Q. Because the integration is carried out in the
Cauchy principal value sense, we can cut off a small sphere with radius ¢ around the singular point p
(Fig. 4).

Thus from Egs. (7) and (8), we can see that if Egs. (15) and (16) are substituted into the last integral
on the right-hand side of Eq. (9), the domain integration over the sub-cell ) can be separated into a
radial part and a spherical surface part, i.e.,

Fig. 4. Small exclusion cut off from a sub-cell Q;.
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where dSj is a differential element on the spherical surface with unit radius, i.e.,
ds
dsS; = 2= sin 0 df d¢ (18)

Summing for all cells, the result . .S¢ forms a closed spherical surface, so according to identity (12) the
last integral in Eq. (17) is zero. Furthermore, with the help of Fig. 5, we have:

rin;

dS=dlcos f=dI

(19)

r

where f is the angle between the normal of the differential element of the spherical surface d.S directed
along the r direction and the cell boundary surface dI” with normal n.
Substituting Eq. (19) into (18), it follows that:
ds; = 22t ar (20)
r

Eventually, substituting the above equation into the first integral on the right-hand side of Eq. (17) and
using Eq. (7), we obtain:

J Eifk/ dQ = J Eijklrmnmln rdl’ (21)
& r

Similarly, for the initial strain approach, we can obtain:

Fig. 5. Relation between spherical surface (dS) and cell boundary (dI').
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J Zijtr dQ = J Ziitmiyn r dI’ @)
Q s
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Now the domain integrals have been transformed into non-singular cell boundary integrals. They can be
calculated using standard Gaussian quadrature formulae. For 2D problems, we can derive exactly the
same results, as Eqgs. (21) and (22), with the understanding that the boundary integrals are carried out
over line elements.

Eqgs. (21) and (22) are very easy to use. The kernels of the transformed boundary integrals are simply
formed by multiplying the original kernels, Ej; and X, by the terms, r,, n, Inr. The boundary
integrals need to be carried out only over the outer surfaces of the volume cells around the source point
p. Moreover, they have the same forms for 2D and 3D problems, so simplifying the task of developing
unified code.

3.3. Numerical implementation formulation of the strongly singular domain integrals

We assume that the expected yield region is divided into N, interior cells, each of which forms a
piecewise continuous approximation to the yield region. Over each cell, the positional co-ordinates and
initial stresses are interpolated using quadratic shape functions. Thus, the strongly singular domain
integral in Eq. (6) can be expressed as:

N. N,
JQ Eju(p, 4)68(9) d2(9) = Y Y E il (23)

c=1 o=1

where N, is the number of cell’s nodes (20 for 3D and 8 for 2D), and,

- JQ, Eya(ps )Na(4) 42(@) (24)

¢

in which, Q. is the domain of the cell ¢, 6;“ is the ijth component of the initial stress at node «, and N,
are the shape functions (Banerjee, 1994; Gao, 1999).

For cells not including the source point p, Eq. (24) can be calculated in the usual way (for adjacent
cells having greatly differing sizes, an adaptive integration algorithm is needed (Gao and Davies,
1999b)). For the cells which include the source point p, the cell Q. is sub-divided into a number of sub-
cells (Fig. 2), i.e., Q. = Z?ﬂ @’ with N? being the number of the sub-cells. Using Eqs. (9) and (21) we
have:

N: N3
- ZJ Ega(p. ){Natd) — 320} 424) + 6, Y LY Ey(p. Q)rwiln r dT(Q) (25)
s=1 ¢ s=1 71
where
1 whena=p
Oup = {0 when o#Ep (26)

The last integral on the right-hand side of Eq. (25) can be performed by the usual boundary integration
scheme. However, in the evaluation of the first domain integral, the intrinsic co-ordinate transformation
from the original system to a new system established in a sub-cell is necessary (Mustoe, 1984; Gao,
1999).
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4. Incremental variable stiffness iterative algorithm

In the numerical implementation, the boundary of the body under consideration is discretized into
boundary elements and the expected yield region is discretized into cells. Evaluation of the boundary
integrals in Egs. (1) and (6) can be found in various references (e.g., Swedlow and Cruse, 1971; Telles
and Brebbia, 1979; Banerjee and Raveendra, 1986; Mukherjee, 1982; Gao and Davies, 1999a). The
weakly singular domain integral in Eq. (1) is performed using the cell sub-division technique (e.g.,
Mustoe, 1984; Dallner and Kuhn, 1993). The strongly singular domain integrals in Eq. (6) for
calculating the interior stresses are evaluated using the method described in the previous section. Stress
fields at boundary element nodes are computed using the boundary stress-recovery method (Swedlow
and Cruse, 1971; Telles and Brebbia, 1979; Kane, 1994). Finally, from Eqgs.(1) and (6) and using the
boundary stress-recovery method, we obtain:

[H{i} =[G} + [E* {67} (27)

{6} =[H°Na} +[GNUi} +[E°Ns?} (28)

where {11} and {7} are boundary displacement and traction vectors, respectively, and {¢?} is initial stress
vector, consisting of initial stresses at both boundary nodes and interior nodes. After applying the
boundary conditions to Eq. (27), transferring all the boundary unknowns to the left-hand side and
transferring the known matrix products to the right-hand side, we obtain:

(a1} = 1V} + [E N6 (29)

where {X} are the boundary unknowns.
Similarly, after applying the boundary conditions, Eq. (28) yields:

{6} =X} + ¥V} +[E°Ne7) (30)

where {6} is a global stress vector, consisting of stresses at both boundary nodes and interior nodes.
To solve Eqgs. (29) and (30), expressions for evaluating the initial stress increments must be obtained.
In this paper, a strain-space plastic formulation is adopted.

4.1. Rate-independent elastoplastic equations

In the classical (flow) theory of plasticity, the general elastoplastic constitutive relations are based on
Drucker’s postulate (e.g., Owen and Hinton, 1980; Crisfield, 1997). However, Drucker’s postulate is only
suitable for stable materials under stress control with perfect plasticity as a limiting case (Naghdi and
Trapp, 1975; Gao and Zheng, 1990). In this paper, the elastoplastic constitutive relationships based on
Il'iushin’s postulate (II'iushin, 1961) are adopted, which is suitable for both stable and unstable
behaviour. For simplicity, the following yield function is considered (for more general cases, see Gao,
1999):

F(oy, ¢, 8") = floy. e}, 87) —k(E?) =0 (31

where &7 is the equivalent plastic strain. Its increment is given by:

e’ = g;sﬁ”;s_!? (32)
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The IT'iushin postulate states that the work done in a closed strain cycle is non-negative and yields the
following results (e.g., Chen and Han, 1988; Gao and Zhong, 1992):

p_ipe O
where /. is the plastic multiplier, which is given by (e.g., Gao, 1999):
5 1 af e
A= E@Diﬂdek} (34)

here

af . of < , 8f> 29 af of of
=D ——+|H - | [z - 35
v 3oy Waak,+ 98" )\ 300;00; 0ef oy 35)

where H' =0k/de” is the local slope of the uniaxial stress/plastic strain curve, which can be determined
experimentally.

It is noted that Eqgs. (34) and (35) are similar to those used by Banerjee et al. (1989) and from Eq. (4)
we can see that Eq. (33) can be reduced to the Drucker normality rule (e.g., Owen and Hinton, 1980).

4.2. System equations formulated in terms of the plastic multiplier
The elastic stress increments can be defined as (e.g., Telles, 1983):
5 = Dijéni (36)

The total number of nodes is denoted by N. For each node, say node n, from Eq. (5) we have (in matrix
form):

{6}ony= L}y "}y (37)

Eqgs. (33) and (34) can be written in matrix forms as:

{é-p}(ﬂ): {d f}(n)i(n) (38)
b = V13 Yo 16D (39)
where
e %}
L b=t 2] )
L[
{V.flﬁ}(n)_ E{%}(H) (41)

A global initial stress vector can be formed from Eq. (38) as:
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67y =[a 1{2} 42)

where [d / ]is a 6N x N diagonally dominant sparse matrix, formed by Eq. (40).
Inverting Eq. (29) and using Eq. (42), it follows that:

() = {v} + a1l /100 43)
where

(v} =[] {Y) (44)

(4= [4*] ' [E?] (45)

Substituting Egs. (42) and (43) into (30), leads to:

{6y =1¥} +1Ela 17} (46)
where

V) =17} + oy} (47)

[E] = [E°] + [4°1[4¢] (48)

Substituting Eqs. (46) and (42) into the global form of Eq. (37), and the result into (39), we obtain:

() = o] (1) 18l 2040 + L 71430 (49)

where [Vfy] is a N x 6N diagonally dominant matrix, formed by{Vf,/,}fn) (see Eq. (41)). Rearranging (49),
we obtain the system equations as:

(4212} = (¥} (50)
where

[4*] =10 - [V ]iclla /] (51)

7 = v 117) (52)

In which, [C] is a constant matrix:
[C]=[1]+[E] (53)

Once the plastic multipliers {4} are obtained from Eq. (50), the increments of the boundary unknowns
and stresses can be computed using Eqs. (43) and (46), respectively. Only [Vf,] and [d 7] (obtained from
Eqgs. (41) and (40), respectively) are functions of stress. Thus, the Newton—Raphson iterative process can
be easily applied to solve these system equations.
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4.3. Newton—Raphson iterative algorithm

The notation {o},, {X'}, and {1}, is used to denote the stress, boundary unknown and plastic
multiplier vectors, respectively, at the end of the nth increment. For the new increment, we use {o}', {X}'
and {1} to denote the results after the ith iteration. The residual of Eq. (50) can be written as:

(®y'= 17V L] (1)) (54)
To reduce the residual to a specified tolerance, forcing {R}'*! to be zero produces:

MRY | T
{Ai} = (RY-[4*]{AZ 55
mw{} (RY -[4*]{Ai} (55)

where {A2} are the changes in the plastic multiplier. From Eq. (55), we obtain:

0={R}""={R)+

L ]{ak) = (RY (56)

Solving Eq. (56) for {A/.l}, we can obtain the changes in plastic multiplier. Then, the corresponding
changes in boundary unknowns and stresses can be computed by:

{ax} =14a /T {al} (57)

ac) = ([ /T{Ad) (58)

The values of the variables need to be updated by:

Oy = gy +{ail (59)
= (xy+{ax} (60)
{0} = (o} +{Ac) (61)

This iterative process can be described as follows:

1. Impose load increment (Y} and {Y} using Eqgs. (44) and (47).
2. Scale stresses for each node:

(o'} = {a}n—i—{ f}

IF F(¢")<0 THEN {c}, = {0}
ELSE IF F(s,) <0 THEN

3. Initialise iterative variables for each node:
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i=0; (o)= (o), +{¥} y'= 0+ ) =1,
4. Evaluate [4*] and {Y'_f }' using Eqs. (51) and (52) in terms of stress state {a}’.
. Calculate residual {R}' using Eq. (54).
6. Check convergence:
IF |{R}'| < TOLER THEN GOTO 1 for next increment

9,

7. Solve system equations for (A2} using Eq. (56)
. Evaluate changes in boundary unknowns and stresses using Eqs. (57) and (58).
9. Evaluate changes in internal variables:

ey =[afas)iail; {as"} = /2308671 (i)

10. Update variables for each node using Eqs. (59)-(61) and k(e?)=k(e P)+H’A§p
11. i=i+1; GOTO 4 for next iteration.

o]

It is of importance to note that in the above process, the matrices [Vf,] and [d /] are zero for elastic
nodes. Therefore, the number of degrees of freedom of the system (Eq. (50)) is equal to the number of
yield nodes in the current increment. This feature can save substantial computational time. Further, [C],
[4¢] and [E] in Egs. (51), (57) and (58), respectively, are constant matrices. Once they are formed and
stored, they can be used directly. Also, the matrices [Vfy] and [d /] need not be formed in computation,
because they can be directly incorporated into the matrices [4%] and {Y”’ } during the assembly process.
Although inversion of matrix [4"] is needed (in Eqs. (44) and (45)), the computational cost is small since
its dimension is related to the number of boundary nodes alone and the inversion is carried out once
only. This process has therefore distinct advantages over existing Newton—Raphson iterative techniques
(Chopra and Dargush, 1994) which operate on the entire system equations (boundary + internal).

5. Numerical examples

The boundary element solution of elastoplasticity is evidently complex and should be thoroughly
validated. This section describes some work carried out for this purpose using the computer code
(NLBEAS) which was developed using the method described in this paper. The detailed description of

z u=30
N
1 B
| v=0.3
c,=038
10. y
l ”
10
v l/ > X
<—— 10. —

Fig. 6. A cube under tension.



X. Gao, T.G. Davies | International Journal of Solids and Structures 37 (2000) 4987-5008 5001
Table 1
Results for the cube centre (H' = 0.1)
0. el u. Uy
Linear cell and element 1.0000 2.0000 15.000 —6.500
Quadratic cell and element 0.9999 1.997 14.992 —6.498
Analytical 1.0 2.0 15.0 —6.5
1
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Fig. 7. Hardening, perfect plasticity, and softening performance.
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Table 2
Convergence of iterative process

Increment No. of degees of freedom Iterations Value of [{R}|/ o, for every iteration

1 13 3 8.513E-2, 1.502E-3, 2.801E-5

5 20 3 1.116E—1, 2.258E—3, 5.774E—5

10 40 4 1.369E—1, 3.188E—3, 1.196E—4, 5.374E—6

15 80 5 1.512E—1, 6.432E-3, 1.047E—3, 1.640E—4, 2.365E—5

this program and more complicated examples can be found in Gao (1999). Only three examples are
given in the following, which were computed using single precision arithmetic on a Pentium PC (233
MHz, 64 Mb RAM). Computational times on the current generation of micro-computers may be of the
order of magnitude less than those quoted here.

5.1. 3D Cube under uniaxial tension

This first example deals with a cube subjected to tensile displacement (Fig. 6). The material satisfies
the Von Mises criterion, and this example is intended to illustrate hardening, perfect plasticity, and
softening phenomena under uniaxial loading.

The cube was discretized by four boundary elements per surface and eight volume cells and the
‘roller’ condition was imposed on the three planes x = 0, y = 0 and z = 0. The computation is
displacement-controlled. Table 1 gives the computed results at the cube centre for a linear hardening
case (H' =0.1), using linear and quadratic elements and cells. From Table 1 it is observed that the
results calculated by the current method are in excellent agreement with the analytical solution.

Fig. 7 shows computed results for the perfect plasticity (H’' = 0), hardening (H' = 0.1), and softening
(H' = —0.1). All of these results are, essentially, exact and illustrate the capacity of the program to cope
with the spectrum of hardening rules.

In this problem, the results are essentially independent of increment size and in each increment
convergence can be achieved only using one iteration, provided that stress-scaling is carried out when
the trial stresses {6’} cross the yield surface. The total computational time is 140 s for the quadratic
elements and cells with 81 nodes (including 74 boundary nodes), 24 boundary elements and 8 cells.

Fig. 8. Mesh and material properties of an internally pressurised thick cylinder.
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Fig. 9. Displacement of the inner surface with increasing pressure.

5.2. 2D thick-wall cylinder under internal pressure

The second numerical example considered is a thick cylinder subjected to internal pressures (Fig. §),
under plane strain conditions. Due to symmetry, a quarter of the cylinder is analysed using quadratic
boundary elements and cells. The discretization consists of 133 nodes (including 26 boundary nodes), 12
boundary elements and 36 cells. The Tresca yield criterion is assumed and the numerical solutions
obtained are compared with the theoretical results of Lubliner (1990). The pressure/radial displacement
characteristics are shown in Fig. 9 and radial and circumferential (hoop) stress distributions for a
specified pressure value, p = 18, are plotted in Fig. 10.

To examine the dependence of the results on load increment size, plots of radial and hoop stress
against the number of the increments (for radius » = 100 (inner surface) and r = 150 (middle surface)),
are produced in Fig. 11 for the case of p = 20.

Fig. 11 shows that, at the inner surface, a stable solution is obtained using very few increments of
loading. However, at least 15 load increments have to be used for the case of the pressure p = 20 to
capture a stable internal solution. Table 2 gives some data on the convergence of the iterative process
for the case of p = 20, where the total number of the increments is 15 and the total computational time
is 85 s. The rapid convergence of the algorithm is evident (tolerance = 1.0E—4).
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Fig. 10. Radial and hoop stresses along radius.
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Fig. 11. Stresses versus number of increments (p = 20).
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Fig. 12. Boundary elements and internal cells for footing problem.
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Fig. 13. Load versus mean settlement, for a square flexible footing.

5.3. 3D flexible footing

This example pertains to the collapse behaviour of a square footing (with dimension B = 1) on the
surface of a half-space. It is conventional practice to express the collapse load in terms of the undrained
shear strength (C,) of the soil. From the definition of the equivalent stress ¢, (uniaxial tension yield
limit) which characterises the von Mises yield criterion, it can be easily shown that ¢, =2C,. The
computation was carried out using quadratic boundary elements and internal cells. The far-field ground
surface was discretized using progressively larger boundary elements (Gao and Davies, 1998). At each
node shared by the footing and ground surface, two nodes were used to model the traction-discontinuity
(Gao, 1999). Young’s modulus £ = 1000 and Poison’s ratio v = 0.3 are assumed through out. The
displacements in the following figures should be divided by 10 to recover the actual displacements. A
uniform vertical pressure is applied on the footing and quadrantal symmetry is utilised. To examine the
convergence characteristics, three analyses were performed: (a) 155 nodes (including 48 boundary
nodes), 11 boundary elements and 15 cells; (b) 476 nodes (including 119 boundary nodes), 32 boundary
elements and 64 cells; and (c¢) 1197 nodes (including 200 boundary nodes), 57 boundary elements and
198 cells. The number of elements over (the quadrant of) the footing is one, four and nine, respectively.

10
8 0\‘\
o ——
m 6
o
i 4
2
0

o 1 2 3 4 5 6 7 8 9
Number of elements over footing

Fig. 14. Convergence of footing collapse load solutions.
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Fig. 15. Deformed mesh and yield nodes for 9 element case (near collapse).

Fig. 12 shows the meshes for each case (over the expected yield region only), depicting both the
boundary elements and the corresponding cells in plan and in transverse section. Fig. 13 is load-
placement plots, where the ‘mean’ displacement is approximated using the equation (Fox, 1948) uy =
(Ucomer + 2Ucentre Jiexibie/ 3- This should yield approximately the same displacement as a rigid footing.

Fig. 13 shows that there is little difference between the results up to a load level of 4.5C,B*. The
coarse discretizations however fail to capture the collapse (at about 6C,B?) and instead return a
monotonically increasing function to higher load levels. The convergence characteristics are more clearly
illustrated in Fig. 14. The relatively small difference between the results for four elements (over the
footing quadrant) with respect to results for nine elements suggests that convergence is very nearly
achieved at the latter level.

Fig. 15 identifies which nodes yield (near to collapse) in plan and in transverse section. The yield
region extends laterally to encompass an area equal to at least four times the footing area and to a
depth rather greater than the footing width.

The exact solution to this problem is not known. However, the collapse load for a rigid circular
footing under the same condition is given by F, = 64.C, (Banerjee and Davies, 1984) where A4, is the
area of the footing, and it is probable that the collapse load for a square footing will not be much
greater. Forty increments are used for this example and convergence is also excellent. The maximum
number of iterations was six and computational time for 1197 nodes was 14 h.

6. Conclusions

In this paper, an effective boundary element algorithm for 2D and 3D elastoplastic problems is
developed. Semi-analytical methods are developed to integrate the strongly singular domain integrals.
The numerical integrations are performed only over the cell boundaries surrounding the source point,
leading to substantial savings in computational time.

The system equations are formulated in terms of the plastic multipliers (only), with the result that the
number of degrees of freedom is equal to the number of the current yield nodes. This novel feature allows
the solution of larger problems than would otherwise be possible. Several numerical examples
demonstrate that the proposed Newton—Raphson iterative solution scheme exhibits excellent convergence.
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